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SUMMARY

A theoretical method is developed for determiring the prezsure dis-
tributions and lcads on prismatic Vee-shaped bodies during chines-dry
planing at high spsed. The method is based on the analogy which exists

.between the motion of the planing body through a stationary plane, ori-
ented normal to its stagnation line, and the penetration of a two-dimen--

sional wedgs. The complete pressure distribution over an immersing wedge
is available so that, on the basis of the above analogy, pressure dis-
tributions and, ultimately, total loads on the planing hody are obtained.

Experiments on prismatic Vee-shaped bodies planing with chines dry
were performed in order to obtain data in addition to those contaired in
the literature for comparisor with the theory. Information on only the
lift and wetted area is given.

The results of the theoretical investigation are, for the most part,
pregented in graphical form. These are compared with the experimental
data obtained from the present reported tests and with other avajlable
data. The comparison shows that a good agreement exists b.otween the the-
oretically predicced and experimentally determinad pressures and loads
over fairlv wide ranges of planing parameters. No attempt is made to
describe the pressure losses in the vicinity of the step whizh occur in
the true three-dimensional planing case; these teénd to reduce the lcads
as predicted by the theory.

The mathematical portions of the theory developed in this report do
not lead to any closed-form expressions for the lift on a chines-dry
planing body, so an empirical expression is derived from the experimental
data. Ciie cf the practical uses of this empirical expression and of the
theory is shown in the development of stability derivatives whicn are
aprlicable to a linear porpoizing stability analysis of the chines-dry
planing body.

This study was carried out at the Experimental Towing Tank, Stevens
Institute of Technology, under Contract No. N6onr-24704 with the Office
cf Naval Hesearch

INTRODUCTION

The present study is part of a general program of research on
planing surfaces which has been undertaken by the Experimental Towing
Tank of Stevens Institute of Technology under Contract No. N6onr-247,
Task Order U4, with the Cffice of Naval Research.* The current repert
deals with both thecretical and experimental aspects of the pressure dis-

* Experimental Toving Teak reports ead papere conpleted to dete ualur thia comtrect ege lieted
in APPENDIX A.

GRS S B BTl

B0t ) O b



s e

R—492
-2 -

tribution and load on a chines-dry, prismatic, Vee-shaped, planing body,
referred to hereinafter as simply the planing body.

The problem of obtaining the pressure distribution and total load
on a planing body by studying the three-dimansional flow about the body
is at present too difficult to solve because of the complexities involved
in establishing a mathematical model of the observed fiow. Therefore, to
achieve results, it has been nectssary to approach the three-dimensional
planing case through its two-dimensional analogue, the immersing wedge.

In general, the procedure for applying an immersing wedge analogue
to the three-direnszicnal planing case is as follows: A plane is considered
statxonary in space, in which the passage of the planing body appears
as an 1mmer51ng wedge. From the pressure distribution over an immersing
wedge that is obtained from available two dxmenssonal aolutiona, the
pressure distribution and load on the planing body cam be found. The
availability of a good two-dimensional solution is therefore a necessary

prereguisite.

It is the purpoze of this study to apply, in the manner outlined
above, the potential theory of the flow and pressure distribution over an
immersing wedge developed in Beferenc~ 1. It is felt that the results thus
obtained will be useful in determining loads and pressures for the
chines-dry planing of both surface craft and seaplanes. They may also be
applicable to the calculation of the pressures in the vicinity of the
leading edge of the wetted area for the chines-wetted planing case.

The present work supersedes Reference 2, a previous E.T.T. report
in which a theory of the planing body is derived in nearly the same way
as it is presently derived, that is, by applying an immersing wedge ana-
logue. At the time of preparation of Reference 2, the complete solution
of the wedge immersion problem of Heference 1 was not available. Con-
sequently, the authors of Reference 2 used two separate theories devel-
oped by Wagner, that of the expanding plate analogy to the immersiug
wedge which does not involve a spray formation, and that of a spray-root
formation of a planing flat plate. Since the unified treatment of the
entire wedge problem, including :he formation of spray-root areas, became
available in Reference 1, it appcared desirairle, in the present study, to
complete the three-dimensional planing body theory on this basis. Another
distinction between this work and Reference 2 is that, here, the immersing
wedge analogue is applied in a plane normal to the stagnation line of the
planing body rather than in a plane normal to the keel.

Since published data for chines-dry planing are limited to a set of
points obtained by Shoemaker (Reference 3), it was considered necessary to
carry out an experimentai investigation to corroborate the theoretical
results of this study. To this end, tests were performed on availabhle
9-in.-beam, Vee-shaved bodies having deadrise angles of 109, 20°, and 30°.
The test¢ trim range was from 22 to 129, in 29 intervals; one test speed,
24.6 ft./sec., was used. The data presented are limited to the lift coef-
ficient and wetted bottom form for all test conditions.
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SYMBOLS

wetted area delincated by the keel, step, and spray-root
lines of the planing body projected onto the plane of the
undisturbed water surface

constant distances locating the leading edge of the wetted
area relative to the center of gravity of the planing

body

lift coefficient = L/£ Vp?Ly?, a function of the trim and
deadrise sangles of the planing body

distance from the longitudinal centerline plane of the
planing body to the spray-root line in the step plane

distance from the centerline of the two-dimensional wedge
to the spray root

distance from the longitudinal centerline plane of the
planing body to the stagnetion line in the step plane

distance from the centerline of the two-dimensional wedge
to thesymmetrical points cf maximum pressure

incremental pitching moments arising from dZ, and dZ,
incremental lift forces acting on the planing body

a function of the two-dimensional deadrise angle = CP’/?'
(see APPENDIX C)

functions of a

a function of the planing body deadrise angle, taken as

(2/m)tanf

e function of the two-dimensional wedge deadrise angle =
C{/y’, or, equivalently, Cs/y. (see apPENDICES B,C)

vertical force on load

moments about the leading edge cf thz wetted area as de-
fined in the report

resuitant perturbed wetted keel length of the planing body
steady planing wetted keel length of the planing body

distance measured from the leading edge of the wetted
area in the direction of the stagnation line

force normal to the planing body

pressure at any point on the wetted surface of the two-

dimensional immersing wedge

R—4092
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angular velocities about the z, y, and : axes, respec-
tively

average pressure over awetted section of the planing body
keel preasure

maximum pressure

time

velocities in the x, y, and z directions, respectively
resultant perturbed planing velocity

equivalent planing velocity of a body whose instantaneous
resultant velocity is not parallel to the water surface

horizontal planing velocity associated with a vertical
penetration velocity of the planirg body

st~ady plaring velocity of the planing body

velocity of the maximum pressure point outboard along an
immersing wedge

immersion velocity of the two-dimensional wedge

vertical penetration velocity of the associated two-dimen-
sional wedge atterdant with a pitching angular velocity

forces in the positive x, y, and z directions, respec-
tively

coordinate axes fixed in the leading edge of the wetted
area

distance from the longitudinal centerline piane of the
planing body to the level water intersection point in the
step plane

distance from the centerline of the two-dimensional wedge
to the level water intersecticn point

le hetween the keel and stagnation line on the planing
direction cosines as defined in APPENDIX B

deadrise angle of the planing body
deadrise angle of the associated two-dimensional wedge

angle between the keeland spray-root line on the planing

body

pitch angle of the planing body about the center of grav-
ity
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A aspect ratio = L,/C,, a function of the trim and deadrise
‘p
angles of the planing body
L SUTINE 2% direction cosines of the stagnation line and keel of the
Ngs Mg, Vg planing body
v, T, angular displacements in the reference system as defined

in the report

P mass density of water

In addition to the above symbols, the following notation has been used in
this report (predcminantly in the section on stability):

G the dot indicates time differentiation of the variable G,
G arbitrary

G the bar indicates a perturbation guantity (i.e., G =G —Gy)

G* the star refers to axes fixed in space as discussed in
the text

Ceg the subscript CG denotes that the quantity G is either a

distance or a velocity of the center of gravity of the
planing body relative to a space-fixed set of axes

G, the subscript o indicates the equilibrium value of the
quantity G
G, 4, w,..., ec. the subscripts 7,u,w,...,etc. denote partial differentia-

tion of the quantity G with respect to these parameters

THEORETICAL ANALYSIS

GENERAL CONS IDERATIONS

In order to datermine th~oretically the approximate pressure dis-
tribution and total load on a high-speed planing body, use will be made
of the followinz general (and usual) assumptions:

(1) The fluid is ideal -- inviscid and incompressible.

(2) The forces due to gravity may be neglected in comparison with
the relatively large dynamic forces.

In order to avoid the mathematical difficulties of a complete
three-dimensional analysis of the flow and pressures in the vicinity of
the planing body, it 1s convenient to treat this threz-dimensional case
in terms of its two-dimensional analogue, the immersing wedge. Thus, the
passage of the planing body through a stationary plane is taken as bzing
e2quivalent to the penetration of a wedge in this plane. A basis foi this
analogy is apparent if i1t is noted that there is a marked. similarity be-
tween the flow fields in the spray-root regions of both the planing body
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and the immersing wedge. Additional special assumptions, resulting from
observation and experimentation, are required to complete this anelogy.
These are:

(3) A stagnatiocn line exists on the planing bcdy. This line, which
is defined as the locus of points of maximum pressure on the
wetted bottom area of the planing body, is the physical di-
viding line aft of which the fluid proceeds essentially in the
after direction and forward of which the fluid is deflected
laterally as spray.

(4) The fluid velocity along the stagnation line is constant; it 1is
equal to the component of the resultant planing velocity in the
direction of the stagnation line.

The existence of the stagnatxon line is well established. The constancy

of velocity or pressure along it can be verified to & somewhat icsser eox-
tent if a study 18 mude of available pressure data.

The next step in the analogy is to select the orientation of the
above-mentioned stationary plans in space in which the planing body will
appear as an immersing wedge. Finally, a two-dimensional theory for the
pressures on an immersing wedge has to be selected in order to obtain

pressure distributions over the bottom of the planing body.

PREVIOUS ANALYSIS

An earlier theory for the pressure distribution and load on a pian
ing bedy, derived by the method described above and based on the 2ssump-
tions listed on page 5 and above, is presented in Reference 2. Since
the subject matter of Reference 2 is so closely related to the present in-
vestigation and since some use will be made of results obtained therein,
it 1s considered important to outline briefly the techniques and limita-

tions of this earlier analysis of the planing problenm.

In Reference 2, che stationary plane of wedge immersion was taken
normal to the keel of the planing body. The general pressure distribution
in this plane was then obtained by using two theories, both two-dimen-
sional. The first of these, based on the analogy in Reference 4 of the
expanding plate to the immersing wedge, yielded the pressure distribution
from the keel ofi the immersing wedge to the maximum pressure point. It
failad, however, to predict pressures beyord this point on the wedge be-
cause the expanding plate analogy fails to predict accurately the free
fluid surface deformation in the spray-root region. The second theory,
the spray-root analysis of Reference 5, was used to obtain the remaining
pressure distribution from the maximum pressure point outboard zlong the
wetted portion of the wedge.

The maximum pressure on the stagnation line of the planing body was

e1so evaluated in Reference 2, independently of any immersing wedge ana-
logue. This evaluation was made possible Ly assumption (4) listed on
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page 6, which gives informaticn on the magnitude and direction of the
velocity along the stagnation iine. The maximum pressure was found by ap-
plying Bernculli’'s equation between points infinitely far from the sur-
face and on the stagnation line. With the validity of the maximum pres-
sure as obtained from this velocity resolution technique accepted, this
pressure was ther expressed in Reference 2 in a form mathematically
analogous to the expressions for the maximum pressure as derived from the
expanding plate analogy to the immersing wedge. This expression gave rise
to the concept cf an "effective deadrise,”" defined to be the deadrise
angle of that wedge immersing with velocity V, sin7 (the component of the
planing velocity normal tc the keel) whose maximum pressure was the same
as that given by the velocity resoiution technique, and whose mathemati-
cal formalism agreed with that of the expanding plate analogy to the im-
mersing wedge. Pressure distributions in pianes normal to the keel were
then assumed to be given by the combined theories of the spray-root
analysis and the immersing-wedge analysis., In the resulting expressions,
the wedge deadrise angie was replaced by the effective deadrise angle,
Total lcads were obtained by integrating these pressure distributions
over the wetted area.

The good agreement between the theoretically and experimentally
determined wetted shape of the planing body and the load coefficient
shown on Figures 28 and 30, respectively, of Reference 2 tends to justify
the application of a two-dimension:l appreach to the three-dimensional
planing case. However, it must be remembered that the usefulness of the
analysis of Reference 2 is dependent upon the introduction of a fic-
titious deadrise angle of the immersing wedge; also, the theory of the
immersing wedge used therein has been superseded by the theory of Refer-
ence 1. These facts suggest that an improvement to the analysis of Refer-
ence 2 might be obtained.

THE PRESENT ANALYSIS

In the present analysis, a theory 1is derived for the pressure dis-
tribution and load on a planing body, using the methods and assumptione
listed on pages 5 and 6. The analysis differs from the analysis of Refer-
ence 2 in at least two respects: (1) the stationary plane of the two-
dimensional immersing wedge analogy is not selected normal to thc keel,
and {2) the theory of Reference 1 is used to obtain pressure distribu-
tions in the stationary plane. A discussion of these two salient differ-
ences and a discussion of the assumed flow phenomena in the stationary
plane are given below. The application of this theory in obtaining local
pressures, total lscads, and stability derivatives of use in a linear sta-
bility analysis is reserved for later sectioms.

SELECTION CF THRE STATIONARY PLAKE
In a two-dimensional solution of wedge penetration, the plane of

immersion is perpendicular to both the keel of che wedge and the maximum
pressure line. Since the maximum pressure line and keel of the three-

b
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dimensional planing body =re not parallel, it is impossible to select a
stationary plane in which the passage of the planing body wili appear in
all respects as a penetrating two-dimensional wedge. However, since the
major porticn of the load ccmes from the immadiate neighborhced of the
maximum pressure line for wedge deadrise angles up to about 40°, it may
be supposed that any analogy which treats wedge penetration should prefer-
ably treat it in planes normal to this maximum pressure line. Thus, inas-
much as the atagnation line of the planing body is assumed to correspond
to the maximum pressure line of the imueirsing wedge in the present araly-
sis, the planes of wedge immersion are taken normal to this stagnation
line, which is defined by the planing geometry developed in Reference 2.
A prelimirery attempt to analyze the presasures and loads on a planing
body by treating it as a series of wedges immerszing in planes normal to
the stagnation line was made in Refzrence 4; the solution was by no means
completed, however, and the pressures cver the wedge in this plane were
obtained in the same manner as in Reference 2.

THE TWO-DIMENSIONMAL THEQRY OF THC PENETRATING WEDGE

The twc-dimensiovnal theory of the immersing wedge which 1is used in
this report was originally proposed by Wagner (Reference 6), and then
expanded and carried out in detail by Pierson in Reference 1. This theory
develops, by means of an iterative process, the shape of the perturbed
iree fluid surface accompanyirg a wedge penetraticn, which i1n turn
leads to the time-dependent potential in the two symmetrical spray-roct
ruzgions on the two sides of the wedge, and finally tc the complete ve-
locity and pressure distribution over the wedge. This theory of the im-
mersing wedge has the obvious advantage over the combination of twe two-
dimensional theories used in Reference 2 in that it yields pressure dis-
tributions over the wedge which are correct (limited oniy by the accuracy
of i1:eration process), within the limits of potential theory. Unfortu-
nately, this wedge theory is carried out for only a limited number of
wedge deadrise angles, namely, 20°, 30°, 40°, and 50°, and each of these
is presented in graphical form. This latter fact leads to the presenta-
tion of results of the present three-dimensional solution in graphical
form rather thau in closed form.

FLOW PHENOMENA IN THE STATIONARY PLANE

ar .‘;S referred to F-;nnv-ae 1 end 2 l’nnope 40 anr‘_ 41) fl_‘b!‘ t.he.
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following discussions. Figure 1 is a pictorial representation of the
planing body and embodies most of the essential features and notation re-
ferred to herein. Figure 2 shows the associated immersing wedge in its
relation to the three-dimensional planing body as the latter passes
through the stationary plane, and the notation in this plane. It is
pointed out that an analogy exists between the flow about only one side
of the pianing bodv, in the stationary plane, and the flow about only cne
side of the immersing wedge.

wa
-

In Figure 1, the line of intersection between the stationary plane
perpendicular to the stagnation line and one side of the planing body is
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denoted by K,S, and the line of intersection between the stationary plane
and the water surface is denoted by K,W. The angle between these two lines
is called the associated deadrise angle, O, (see Figures 1 and 2). This
angle, B,, is then the geometric deadrise angle of the immersing wedge
associated with the passage of the planing body as viewed in the station-
ary plane as defined. The associated deadrise angies as functions of the
plening body trim (7) and deadrise {B) angles have been computed by a
method set forth in apPENDIX B; a graph of B, vs. B for various 7 ap-
pears in Figure 3.

In addition to defining the geometry of the associated wedge in
terms of the geometry of the planing body, it remains to define the im-
mersion velocity of this wedge in terms of the steady planing velocity of
the planing body. The physical condition which permits this evaluatior is
that, to an observer situated in the stationary plane, the passage of the
planing body stagnation line appears ss the traveling maximum pressure
point of the associated immersing wedge. It is then clear that the ve-
locity of the maximum pressure point out along the wedge is equal to the
corresponding velocity of the stagnation line in this plane, normal to
itself along the placing body. This condition becomes more important if
it is realized that the penetration velocity, and hence the pressure dis-
tribution over the immersing wedge, may be defined in terms of the ve-
locity of the meximum pressure point cutbcard along the wedge. Thus, from
the geometry of the planing body, the velocity of the stagnation line
normal to itself in the plane of the body may be determined; this in turn
fixes, within the limits of the present study, the pressure distribution
in rormal pianes and ultimately the total load. The details of the com-
putation which gives the penetration velocity, v,, of the associated
wedge in terms of the planing velocity, Vo, and geometric quantities are
contained in appPeNDIX ¢, with the resultant expression

sinf, sina o
= e s G
N K cosT ] '

where a 1s a function of the planing body trim and deadrise angles, and X
is a function of the associated deadrise angle. Both a and K as used are
defined 1n APPENDIX C.

Finally, having obtained the associated deadrise, ﬁa, and the pene-
tration velocity, v,, the pressure distributicn in normai planes is taken
as the pressure distribution given in Reference 1 for the immersing wedge
of deadrise B;. Since Reference 1 provides pressure distributions for
deadrise angles of 20°, 30°, 40°, and 50° only, the results must be inter-
polated or extrapolated to obtain pressure distributions for an arbitrary
wedge deadrise angle. The total load acting on the planing body is then
found by integrating these pressure distributions over the wetted area,
but more will be said of this later.

SHMMARY

In the present theory, (1) use is made of the four general and spe-
cific assumptions listed on pages 5 and 6; (2) the stationary plane is

|
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selected normal to the stagnation line of the planing bedy; (3) the plan-
ing body geometry in this plane defines B,, the deadrise of the two-
dimensional wedge associated with the passage of the planing body through
this plane; (4) the velocity of the stagnation line of the planing body
in this plane is used to determine the corresponding penetration velocity
of the sssociated two-dimensional wedge; and, finally, (5) use is made of
a single two-dimensional theory (Reference 1) of the immersing wedge to
obtain pressure distributions in the normal planes and hence the total
loads on the planing body.

EXPERIMENTAL STUDY

Relatively little experimental data pertaining to the chines-dry
planing of prismatic Vee-shaped surfaces are available. In fact, the only
extensive chines-dry planing data pubiished prior to the present investi-
gation were obtained by Shoemaker (Reference 3). Some work on impact
prior to chine immersion may be treated as chines-dry planing if the ap-
propriate velocities are used, but even 20, relatively little applicable
data of this type are on hand (see, for instance, Referenczes 7 =snd 8). In
view of these facts, i1t was felt necessary to obtain additionel chines-
d.,y planing data to corroborate the theory oi this report.

MODELS

Three Vee-shaped prismatic modeis having deadrise angles of 10°,
2009, and 30° were sei=zcted from among those used in previous E.T.T.
tests. Each of the models has a beam of 9 in., a length of S4 in. from
transom to bow, and an over-all height of 9 in. Further details concern-
ing the construction and cross-sectional shapes are contained in Refer-
ence 9.

TOWING EQUIPMENT

The tests were performed in Tank No. 3 of the Experimental Towing
Tank. The carriage which was used allowed the models freedom in
only. Pesistance and pitching moment were obteined irom suitabie eleciron-
ic balances. Wetted bottom configurations were determined from underwater
photographs, iwo of which ars shown in Figure 4. The photograph in Fig-
ure 5 shows one of the models completely equipped for testing. Refer-
ence 9 gives further information regarding the towing equipment and as-
sociated test techniques.

heave

In an attempt to minimize errors in lcad or drag readings due to
aerodynamic forces, a iarge aluminum air screen was towed directiy ahead
of the model, as shown 1in Figure 5.

Although usually employed in similar tests at the E.T.T., no turbu-
lence-inducing strut was used in the current tests. It was felt that, in
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view of the small wetted areas to be encountered, too large a disturbance
of the flow pattern might result from t:e use of such a turbulence-stimu-
lating device.

TEST CONDITIONS AND PROCEDURE

Each of the three models was run in a straight line on a smooth
water surface at a constant speed of 24.6 ft./sec., at fixed trim with no
yaw. The models were free to heave and hence assumed a vertical position
at which the load on the model was supported by the dynamic reaction of
the water. For each of the test trim angles 7 = 2°, 4°, §°, 82, 10°, and
122, the load was adjusted so that the stagnation line emerged from the
step plane no closer than 1/8 beam from the chine. In most cases, the
load was also varied at a given trim in order to serve as a check on the
computed loed coefficient, C,.

The following general test procedure was used for a typical planing
run: The model was set at the proper trim angle and, as the case de-
manded, loaded or unloaded to the desired weight. The carriage was then
accelerated to running speed by automatic control. As the model passed
the underwater camere which wes set up to take photographs of the bottom
planing area, an electric eye arrangement triggered the camera. During
this time, electronicreadings of the drag and pitching moment were taken.
A visual observation of the towed model indicated at which position the
stagnation line was emerging at the step and thus suggested what loading
to use in the check runs. The model was then returned to its starting
position and the process was repeated for different combinations of load
and trim. The detailed planing test conditions for each model, together

with the test results, are given in Table I {pages 38 and 39).

Despite the precautions taken to eliminate aerodynamic forces, it
was believed that some*would remain in the presence of the air screen.
These were estimated by towing the model just off the water surface be-
hind the air screen, repeating the conditions of speed and trim which had
been investigated with the model in the water. These aerodynamic forces
and moments were subtract=d from the original test quantities to arrive
at the hydrodynamic forces and moments.

TEST RESULTS

«“t

o
-

3]

It was hoped, at the outset of the current study, that the test re-
sults might be presented in the form of lift coefficients and dimension-
less centers of pressure. However, the experimental techrique that was
used led to difficulty in the determination of the centers of pressure.
The computations for the center of pressure depended, of course, on both
the drag and pitching moment measurements as well as on the lift. This
dependence unfortunately was in the form of small differences of large
quantities. Small errors in the large quantities such as pitching moment
or drag thereifore lad to sizable errors in the determination of the cen-

R—4Q2
SN



S .

-

e

R--492
o

ters of pressure. For this reason, the presentation of test resuits is
Iimited to the 1l1ft coefficient; this is tabulated with the corresponding
test conditions in Table I and presented graphically in Figure 6. A small
amount of E.T.T. unpublished data for the case of the 40° deadrise sur-
face and all of the data from Shoemaker’'s investigation in Reference 3
are also shown in this Figure. The scatter of the Shoemaker data is indi-
cated by the boxes surrounding the mean values of C,.

On the whole, there 1s agreement bztween Shoemaker's data and
E.T.T. data, but there seems to be soie tendency for the E.T.T. data to
fall higher than Shoemaker’'s. This difference may be attributed to a
variance in the methods used tu determine wetted length inm each of the
investigations, Shoemeker determined this length from over-water observa-
tions, and E.T.T., from underwater photographs. The tendency of the water
to surge forward in a "roll up along the model bottom could more easily
be taken as a longer wetted length in ovver-water observations than would
appear in underwater photographa, leading to lower values of the lift co-
zfficient C, as defined in this report.

RESULTS AND DISCUSSION

COMPARISON QF THEORY WiTH EXPERIMENT

THE MAXINUM PRESSURE

The prediction of the maximum pressure, denoted as p,, is an im-
portant aspect of a theoretical 1nvest1gat1on of the planing body since
it 1s this pressure that gives rise to the maximum local load. It 1is
evident from its definition that p, will occur on the stagnation line of
the planing body; hence, in the present analysis, i1t will be taken as
being equal to the maximum pressure of the associated immersing wedge.

The maxiimum pressure on the associated immersing wedge can be found
in terms of the planing body geometry and the planing velocity. The fol-
lowing procedure will 1llustrate the use of the various graphs of this
report in finding this maximum pressure:

(1) Given the planing.geometry {i.e., trim and deadrise angles of
the planing body), the associated wedge deadrise angle, £,, can be ob-
tained from Figure 3, which results from the computations outlined in

AN oar
APPENDIX B.

(2) H

lO

ng obtained £, Figure 7 is then referred to for the cor-
respun ing v f the dimensionless maximum pressure based on peneira-
tion velocity, p.ﬁ, vo2 Two curves appear on Figure 7, one solid and one
dashed. The dashed one results from the expanding-plate analozv solution of
the immersing wedge (Reference 4) mentioned previousiy, which 1s a closed
form exprasaien for p /g v, . wedge deadrise angle. The solid curve is

faired through the values ot pm/f v,* taken from Reference 1; it was ex-
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trapolated to £, = 10° by a qualitative and quantitative comparison with
the dashed curve.

(3) Finally, the relationship of equation {1), shown graphically in
Figure 8, allows for the evaluation of the dimensionless maximum pressure
based on planing velocity, p,/4 Vv, ?.

A resultant graph of p,/4 Vg2 vs. 7, obtained by following the
above procedure, is shown in Figur: 9 for four planing bodies having
dcadrise angles of 109, 20°, 30%°, and 40°.

'Another theoretical method of determining p,/§ V,? for any planing
condition is discussed in the section of this report entitled PREvVIOUS
ANALYSIS. In this method, the maximum pressure results from an applica-
tion of Bernoulli's equation between points at infinity and on the stag-
nation line oi the planing body {(Reference 2)}. The resultant expression
so derived is

»

+ ccszﬁ} ,

PN
[y~]
~—

Pn .o [ (K - sin®B)?
- = sin‘T
sin?f + K%tan?~
where all the symbols are as defined herein, K being defined in APPENDIX B
as a function of the planing body deadrise angle, £.

The only experimental data available on the maximum pressure cf a
planing body are contained in References 7 and 8. These data are actually
the result of landing tests performed on bodies whose instantaneous re-
sultant velocity had components paraliel and normal to the water surface.
The equivalent "planing" velocity for the case of landing has been. de-
fined as the resultant horizontal velocity of the stagnation line, Thus,
if * and Z are used .o denote the components of the instantaneous re-
suitant velocity of the body in directions parallel and normal to the un-
disturbed water surface, respectively, the equivalent planing velocity,
V., is given by

.

(3)

tanT

The test results of References 7 and 8 have been summarized by the em-
pirical relation

P / 1

sinT
2 y.3 sin?t + J2cos?T
2 Ve

o~
>~
S

where the quantity designated J is a function of thc deadrise angle. Only
two vaiues of J have been determined experimentally -- cne each for body
deadrise angles of 22%° and 30°; however, in Reference 7, it 1s pointed
out that the asymptotic behavior of J as a function of 5, for small £, is

* Equation (22) of Reference 2.
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For the purpose of comparing the maximum pressure coefficient given by
equation (2) with that given by equation (4) and ‘he one developed in the
present report, it was found convenient to use this definitior for J
throughout the range of [ considered. Only slight discrepancies exist be-
tween this definition and the experimentally determined values of J, as
can be seen on Figure 10.

For each landing condition of the bodies tested and reported in
References 7 and 8, the model penetrated the water to various depths. The
fact that equation (4) above is independent of depth i1s an experimental
indication that no significant variation in peak pressure occurs when the
body passes from the chines- dry to the chines-wetted cond1t1on. There-
IO"P it may well be assuwed that the pressuic distribution in the im-
med1ate vicinity of the stagnation line as theoretically developed in
this report for the chines-dry planing casec is also applicable to this
region wher the chines are wetted.

Figure 9 shows a comparison of the maximum pressure coefficients
given by equations {(2) and (4), and the theory developed in the present
report, throughout a practical range of trim and deadrise angles. In
general, the agreement among them 1s good. However, the values of the
maximum pressure coefficient given by the three methods tend to diverge
at high trim angles. This 1s to be expected since different limiting
values of the maximum pressure coefficient are predicted by the three
methods as the trim angle of S0C is approached. Since the change in the
maximum pressure coefficient with trim angle 1s not rapid for large trims
(30%9 < 7 < 909), the limiting value at 90° trim will affect the values at
other high trim angles. The empirical equation (4) predicts a maximum
pressure coefficient of unity at 90° trim angle; equation (2) predicts
that this coefficient will epproach cos?£ at this trim angle; and tae
present theory is forced to leave the value of this coefficient undefined
at this limiting condition inasmuch as values of £, approach 90° with the
trim angle and no asymptotic theoretical values of the maximum pressure
coefficient for high deadrises are available.

THE LIFT COSFFICIENT

The 1lift, L, in the upward direction perpendicular to the undis-
turbed water surface 1s given by the product of the average pressure over
the wetted surface of the body and the area of this wetted surface pro-
Jected onto the undisturbed water plane. Thus, before a theoretical deri-
vation of the lift coefficient can he completed, the magnitudes of the
average pressure and the projected wetted area must be determined.

In orlder tc determine the average pressure on the surface of the
planing body, it is first necessary to establish the correspondence of
the two-dimensional pressure distribution over the associated immersing
wedges with the pressure distribution over the entire wetted porticn of

ey




the planing body. To this end, the reader is referred to Figure 11, a
plan view of the pianing body. Shown on this Figure are typical sections,
A-A ard B-B, taken normal to the stagnation line of the planing body, 1in

side oi an 1mmersing wedge. In a section such as B-B, which does not
inter-2ct the keel of the planing body, the step of the planing body is
taken o correspond to the keel of the immersing wedge. This assumption
is co:r enient in practice since it insures that, once the average pres-
sure 2 any section normal to the keel has been determined, it will be
const-nt for all such sections, and that (prov1d1ng £, <40°) the pressure

AL o Ihoat 3 o an Al tha nlacda~
aiste ~~lut‘vn over :hc a:uy uf thc ya.uu;ua uad, wa.l; be constant aud a

minirum (see section C-C of Figure 11), which approaches the true case.
It i1z understood, of course, that, in reality, the pressure quickly drops
to z2ry at the step. This drop, however, affects only a small part of the
comp'=2te pressure distribution and is neglected in the present work.

Having set up a ccrrespondence oi the two-dimensional pressure dis-
trib:tion of the immersing wedge with the pressure distribution over the
planing body, it now remains to evaluate the average pressure from these
prec zare diatributions, To do this, the pressurs diztribution ecurvea for
the .mmersing wedge which are reproduced from Reference 1 in Figure 12
for various deadrise angles must bs integrated over the wetted width, It
will Ge noied irom this Figure tih&at these curves excend out to values of
', the distance from the wedge centerline, greater than C_ ', the dis-
tance from this centerline to the spray root (see Figure 2}. However, in
view of the fact that the theoretical expression for the distance C_’/ is
so ~imple and relatively well established, . it was decided to define the
weighted average pressure coefficient as

P 1.2¢,'
e C_l_/‘ Py . (6)
% vo? P -% vy?

I: order to define the lift, this weighted average pressure is then ap-
p:.¢d to the reduced wetted area delireated by the keel and spray-root
lwucs cf the planing body. In this manner, the total force is included,
l .. it is assumed that it acts over a slightly smaller wetted portion oi
£ ~. planing body than exists in reality. A curve of p /& v,* vs. £, fitted
~nrough four po1nts as computed by the ahove procedure 1s prescrnted
<2 Figure 13 (solid line). This curve is extended to a deadrise angle of
*“> by comparing the average pressures obtained above with those obtained
the combined two-dimensional theories used in Reference 2 (the dashed

- rve of Figure 13). This method is analogous to the procedure used to
>:gend the maximum pressure coefficient curve of Figure 7, as discussed

('l yub\- - -
An expression fer the wetted arca, A , delinzated by the kecel,

step, and spray-root lines of the planing body projected onto the plane
of the undisturbed water surf{ace is found with reference to Figure 1 to

be
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Ap = LyCp cosT , (1)

where L, represents the wetted keel length OK of Figurz 1 and Cp is the
wetted half beam, But from equation (15) of Reference 2,

o~ =1L o {0)
“p o “k .__=7 ' NS
s “ tang
therefore,
A, »—p,2 225 (9)
P 2"k tanp

A comparison graph of the values of A /L,? determined from the
underwater photographs of the present experiments and those which result
from equation (9) above appears on Figure 14. The diiferences between
these values may be attributed directly to the differences between the
observed and predicted values of the vatted semi-width, CP’ which result
from the rapid loss of pressure in the region of the step and subsequent
handing toward the keesl of the stagneticn line in this region (see. for
nxample Figure 4, where the represented test conditions approach extreme
values of tue planing parameters) Thus, by substituting the observed
values of C, 1nto equation (7), a cons1der4bly smaller value for 4 /Lk
results than if use were made of the values of C, predicted on the basis
of the assumption that there is no curvature of the stagnation line. It
is pointed out, hcwever, that the true value of the wetted area defined
by the observed stagnation lines and step differs from the theoretical
value in the vicinity of the step only. This is a consequence of the fact
that the observed stagnation line is essentially straight and, except in
the step region, is in the predicted location. This small difference wiil
be neglected in the succeeding development.

Having determined the average pressure and the projected wetted
area, expressions for the lift and finally the theoretical lift coef-
ficient can now be given. The lift is defined as

L = pA, : (10)

and the lift coefficient based on planing velocity and wetted keel length,
as in Reference 2, 1is

L
Grasie—————= (11)
L2, 2
7 Va'lg

Substituting the right-hand side of equation (9) into equation (10) and
the result into equation (11) gives

Py 7 sinT .
c, = — . 12
L »p v2 2 tanf G
2 "a

- .

mnﬂ,

Py

(el Py
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Since the associated wedge penetration velocity, v,, is related to
the planing velocity, V., by equation (1), then equation {12) can also be

written as

Pa /7 sinT\/sinf, sina \
Gy _.g_ . KE tanﬁ)( K cosT ) ) (13)

v,

The quantity p,/4 v,?. plotted vs. wedge deadrise angle, appears on

Figure 13; values of (7/2)(sin7/tanf) are given on Figure 15; and values
of sinf, sxnn/x cosT, the velocity ratio, can be found on Figure 8.

The theoretical values which result from equation (13) appear on
Figure 6 for comparison with experimental data. The theory predicts well
the type of variation of C, with trim and deadrise angles but there is a
tendency for the magnitudes of C, predicted by the theory to be slightly
greater than those measured. This is, cf course, not surprising inasmuch
as the theory does not take into account the edge preassure losses exist-
ing on the true planing body in the vicinity of the step.

THE LIFT COEFFICIENT IN TERMS OF ASPECT RATIC

It has been pointed out in the development of the theoretical lift
coefficient that the results can be presented in graphical form only --
a consequence of using the theory of the immersing wedge of Refarence 1.
For certain applications oi the theory of lift on the planing body, it is
convenient to have on hand a closed analytic expression for the lift co-
efficient. The desirability of such an expression has prompted the de-
velopment of the following empirical expression for C, as a function of
the planing geometry.

A significant single quantity defining the planing geometry is the
wetted length-beam ratio, A', defined to be the ratio of the wetted keel
length, L;, to the mean wetted beam, Cp, of the planing body. This caa-
cept is a familiar one to both designers and investigators and is there-
fore selected as 2 basis for the development of an empirical expression
for C,. '

An expression for X' in terms of the plening body trim and deadrise
angles follows from 1ts definition and from equation (8) to be

N = z.tanﬁ
7 tanT

(14)

It was found that, by plotting C, vs. A cos?B, the theoretical and
experimental values of C, for the various deadrise and trim angie cumbina-
tions considered on Figure 6 of this report could be adequately collapsed
onto single curves, one theoretical and one experimertal. Figure 16
shows the results of such a pia. Only the mean line is shown through the
relatively small scatter of points obtained by plotting the theoretical
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values. An empirical equat1on which represents the experimental relation-
ship between C, and A\ cos?8 was obtained by fitting a straight line to
the experimenta ﬁ data points on Figure 16. This equation,
I I ) S (15)
(')\16982,3)2'7

represents the data with sufficient accuracy in the range of C, from
0.0006 to 0.1. No experimental data which result in C; values less than
7.0006 are available, but it 1s anticipated that the emp1r1ca1 expres-
sion will adequately represent these high deadrise, low trim angls plan.
ing cases. For C, greater than 0.1, the empirical curve does not agree
wiith the experimental results; however, these C, values correspond to the
low deadrise, high trim angle planing cases ané are not usually of prac-
tical interest. The planing phenomena associated with C, greater than 0.1
are Lhose which have been noted beiore to cause Giillcuxcy oi anaiysis
because of the high pressure gradient in the vicinity of the step, and
the associated reduced wetted area. Some use of the above empirical rela-
tion will be made in the succeeding section on the stability derivatives.

THE STABILITY DERIVATIVES

There 1s, in the literature, a relative lack of analytical expres-
sions for any of the stability derivatives which may arise in a stability
analysis of the porpoising of a chines-dry planing body. A logical sppli-
cation of the theory derived in this report to a practicai plan1ng problec:
would therefore be in the development of analytical expressions for these
derivatives, as shown below. Only the hydrodynamic derivatives result-
ing from the lift force will be discussed. No consideration will be
given to the derivatives arising irom either aerodynamic forces or drag
forces nor to the questions conrected with the solution of the equations.
The derivativcs to be developed will have immediate application to any
linear stability analysis of the chines-dry planing body which may sub-
sequently be made.

In the standard linear stability amalysis, such as the one pre-
sented 1r Reference 10, axes are fixed in space with the origin located
1instantaneously at the center of gravity of the planing craft. Two
coupled equations of motion are written which express the equilibrium of
forces in translational and in rotaticmal acceleration. All terms are
usually referred to the translation of the C.G. and to the rotation of
the body about the C.G. The evaluation of the necessary stability deriv-
atives in such a system 1s somewhat complicated by the fact that a simple
motion may have several effects (i.e., a rotary pitching motion about the
C.G. resuits i1n voinh a change oi weited ilengih and a ci:ange in the angie
of the keel relative to the undisturbed water surface).

The reference axes chosen for the present application of the theory
are fixed in the body at the intersection point cf the keel with the un-
disturbed water surface, at the trim and heave of equilibrium (see Figure

{rwrmry
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17). With this axis system, the stability derivatives take on a particu-
larly simple form, thereby zliminating the possibility of overshadowing
the .underliying principles by the mass of algebra entering with the inter-
action effects referred to above.

Figure 17 shows the space-fixed (x*,z*) axes used in a standard
porpoising stability analysis and the body-fixed (x,z) axes used in the
present analysis, The planing body is shown in its equilibrium state and
in a perturbed state. APPENDIX D contains the necessary transformation
equations which give the applicable etability derivatives in the (x*,:°*)
system in terms of those in the (x,z) system which are derived below.

The general refeorence system for the current analysis is set up as
follows:
{inmar n\unnn1r1nn x y z
Des1gnat10n longitudinal | lateral normal
Positive Direction forward starboard | downward
Linear Velocity u v v
Force X Y Z
Angular Disposition v T w
Designation roll trim yaw
Positive Direction y —z z —x x =y
Angular Velocity p q r
Moment L M N
Here, porpoising is regarded es o coupled motion of pitching and
heaving of the l body in the z,:z-plane; hence, only the Z- force and

M-moment are of 1nterest. Also, surg1ng motion is considered as being un-
coupled and will not be introduced (justified in Reference 10). Z and ¥
are considered to be functions of z, 7, w, and ¢ which, subsequent to a
perturbatior from equilibrium, can be expressed in a linearized Taylor
Series expansion as

Z =2, 42,7+ 2,T+2,w %27 (16)
W= Myt M,T o MT v Myt Mg . (17)
where all derivatives are considered te be constant and are to be evalu-
ated at equilibrium. The first (zero subscr t) terms on the right-hand

side of the above equations denote the equ111br1um values of the Z-force
and M-moment. The bar terms represent perturbation quantities (e.g.,

7 =7 -7,). The remaining terms (Z,, M,, etc.) are partial derivatives
with rhqnorf to the qnhnnr1nr qnonr1r img *hxq qnhnnrinf natctinan shnanld

LU st e =-a Dl BIZOTSC

not be confused with the usual subscripts used to deslgnate the nature of
a parameter, as for instance, L. C,. QP, etc. Linear perturbation quan-
tities are measured relative tc space-fixed axes, taken conveniently as
the initial position of the present axes 1mmedlately prior to a disturb-
ance from equilibrium. Angular perturbations are taken about the origin
of the axis system. The M-moment is measured about the instantaneous po-

sition of the leading edge of the wetted area.
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The above derivatives will be evaluated in terms of the equilibrium
nlaning geometry, and the thesretical equilibrium forces derived in the
present report. Again, it is tc be empnasized that the practical applica-
tion of these particular derivatives to a stability analysis must be car-
ried out in an sxis system which treats the motion of, and about, the C.G.
of the planing body.

2-FORCE DERIVATIVES

It will be convenient in the evaluation of all Z-force derivatives
except Z, to express the instantaneous vertical force, Z, in terms of the
dimensionless lift coefficient, C,, as

z=-£ v, | (18}

L

which 1s valid for any purely translatory motion (i.e., ¢ = 0), where

p 18 the mass density of water,

V is the instantaneous perturbed planing velocity (equilibrium
value - Vi).

L’ 18 the instantaneous perturbed wetted length (equilibrium
value = Lk)' and

SmAISANnE smamn s T

C 18 the ] ficient, comstant for a givenm p

1 se s

b
*

Snink Kcowelry.

The Z-force derivatives are discussed below in the order in which they
appear 1in equation (16).

The vertical force change with change in depth, Z,, is expressed

as

Z2, =Z,y + Ze (Cy), (19)
(subscript notation is uesed and all derivetives esre to be evaluatzd at
cquilibrium). Equation (18) may be used to evaluate Z,: as

2, = 0¥, My, =2 (20)

v PVrtRly L, © -
Next, from Figure 17, it 1s clear that

(L'~ Ly)sinT = 2 , (21}

where L' represents the instantaneocus wetted length of the body, and L,
the equilibrium value, which is equal to L;. Hence,

1

81n'7'o

L' = £22)
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In equation (13), the lift coefficient, C,, is shown to depend only on
the trim angle for a given planing body deaériae angle; thersfore,

(€, =0 . (23)

Substituting equations (20), (22), and (23) into equation (1i9) gives
finally

2

Z, = ——— .
*  LysinT, Zo (24)

The vertical force change with change in trim angle, Z_, is given

by
2, =2Z,L', + 2g, (C)r - (25)

From equation (21), the equilibrium value of L’  is shown tc be zero. ZCL
may be evaluated from equation (18) as

” .
& -

cL

nlm
[+

teyn
\<40)
L

The value of (C,) is obtained from the empirical relation, equation (15),
as

<
y - 5.4
7 VL .

o
(“y/a o=
' o8s1n dTo

o~
[ &)
LD |
~r

so that, finally, substituting equations (26) and (27) into equation (25)
yields
5.4

nr 7

= — -z, . (28
“r 7 Sin 2r, ° (28)

The vertical force change with change in vertical velocity, Z?’
will be derived below, following a brief cutline of the approach taken in
its development.

The effect of vertical velocity on a planing body at a given trim
angle may be treated in terms of its equivalent effect on the horizontal
motion of the stagnation line or planing velocity. This has been demon-
strated in the derivation of equation (4). Thus, a vertical velocity of

magnitude v gives rise to an incremental planing velocity of magnitude
w
V., = , (29)
‘ tanT :

yielding a resultant planing velocity

V=V, +V, =V, +

R (30)
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Since the plsaing velocity or, equivalently, the velocity of the stagna-
tion iine has played such an important role in the theoretical determina-
tion of the loads and preasures on a planing body (see, for instance,
APFEINDIX Cc), it was decided to treat the change in Z-force with vertical
velocity in terms of the change in Z-force with planing velocity. Thus,

L IR Y
&)

(7]

Zy ™2V, + ZcL(CL)w ' (

where (C,)y is zero since it is evaluated at constant wetted length-beam
ratio, N, and by equation (15) is independent of w. Finally, using equa-
tion (1R) for Z and (30) for v, gives

1 22
Ze = (PVLy’C) tan7, V,tanT,

(32)

The vertical force change with change in angular velocity, Z,, can-
not be treated in a manner analogous to that uaed for the other deriva-
tives since the expreasion for Z (equation (18)) is no longer valid. Thia
is a consequence of the fact that, for the caae q ¥ 0, the instantanecus
perturbed planing velocity, V, ia indirectly a function of the distance
between a aection of the body and the leading edge of the wetted area.
The direct dependence of Z on g is in the penetration velocity of the aa-
sociated wedges in plenes normal to the stagnation line. Accerdingly, for
ihz c722 ¢ AD, thed=.  .tive with respect to g will have to be approachsd
b ¢ method which takés into accocunt the variaticn in conditions from
one such section of the bedy to the next. This latter method involves
aetting up expressions for the contribution to the total Z-force by an
arbitrary narrow slice of the planing body in a section perpendicular to
the stagnation line, differentiating it with respect to g, and finally
integrating over the entire wetted portion.

An incremental slice of the wetted bottom of the planing body normal
to the stagnation line defines a wedge. Relationships have been estab-
lished for the associated deadrise angle, £;, and for the average pres-
sure coefficient, p, /4 v,*, of this wedge. These quantities are invariant
with respect to q since they are both geometrically determined and inde-
pendent of velocity. Therefore, with reference o rigurs 1f, the follow-
ing relations are established for the incremental lift forces, dZ, and
dZ,, contributed by the one-sided wedges in such sections:

dZ, =72’_ia_.§ usztana. cos,Ba!i dg (0 < £ < L cosa) (33)
o ‘
v, :
dZ, = pp“ %usz(L;z seca — £)cota cosf; dl
7?”02

(L, cosa < £ < L, a€ea) , (34)

where
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) is the distance between a section of the body and the leading
oige of the wetted area measured along the stagnation line, and

v, is the resultant penetration velocity of the equilibrium maxi-
mum pressure point in this section (see following discussion).

It may be noted on Figure 18 that ¢ has a varying eifect on the
wedge penetration velocity ir a section normai to the stagnation line,
Thus, the keel of the wedge, being at a greater distance from the axia of
g, has a greater induced penetration velocity than other points on the
wedge. It is arbitrarily assumed that this variable penetration velocity
along the wedge may be replaced by a constant penetration velocity equal
to the resuitant vertical velocity componeni of the equilibrium maximum
pressure point on the wedge subsequent to q. This assumption is foundsd
on the premise that the flow in the vicinity of the spray-root area of
the wedge is the controlling factor in a determination of loads. Thus,

=
v, v

o B QB cosa ) (35)

v
ne
e
>

& v, is the squilibrium penstration velocity associated with planing

c
see equation (1)). Substituting the right-hand side of equation (35)
nto equations (33) snd (34), and then evalusting the dsrivatives with
respect to ¢ at equilibrium results in

[T N

Da. aa

(dZy)g = P p.. v L® sina cosB; df {385}
7 ”ol
and
2
p cos‘a
(dZ4)g = p F: - : vod sina (Ly seca ~L)cons, df . (37)
T
Finally, after considerable computation, Zq is found from
ol,co20 alyasca ) ‘
z, = 2} (dz,)g + 2| (d2,)g (38)*
0 ~Licola
to be
2, L 1%
Z -2 Lotk /_ll,\\ (1 + cos?a) cosﬁa\ : (39)
? 3 VaCo8T, \ ¥, cosﬁ/

In the derivation of equation (39), the following definition of the equi-
librium Z2-force has been used:

Z, = pgLpCp cosT . (40)

* Tha fsctor 2 enters by the symmetry of alices on both sidss of ths plsning bedy.
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The significant physical considerations used in establishing the expres-
sion for Z, are (1) the total lift on a planing budy may be treated as a
summation ¢f efiects which occur in sections normal to the stagnation
line, (2) the average pressurz coefficient is a geometrically determined
constant which is independent of q, and (3) the resultant motion of the
equilibrium maximum pressure point in sections normal to the stagnation
line is assumed to determine the motion of the entire section.

N-MOMENT DERIVATIVES

In order to evaluate the required moment derivatives with the ex-
ception of M,, an expression must be developed for the moment about the
instantaneous leading edge of the wetted area in terms of the instantane-
ous wetted length, L', and the instantaneous Z-force. This expression
will be based on the lift theory developed in this report and will be
true for any purely translatory motion (i.e., ¢ = 0).

It is necessary to establish expressions for the incremental mo-
ments, d¥. and dM,, about an axis through the ieading euge cf the wetted
area and parallel to the y-axis, which are contributed by siices of the
wetted portion of the planing body normal to the stagnation line. Re-

ferring to Figure 18, these expressions are as follows:

M, = (0.4/ tana sina + ﬂ::caw.)dz_l (0 < £ < L' cosa) (41)
and
dM, = (0.6£ cosa + 0.4 L')az, {L'cosa < £ < L'seca) . {47}

The quantities multiplying dZ; and dZ, are respectlvely the distances
from rhe moment axis to the center of pressure in the normal sections for
(0 < £ < i'cosa) and (L'cosa < £ <L’ seca). From Figure 12, the center-
of-pressure location on the wedges in these normal sections was found to
be approxlmately 0.6 C;' (see Figure 18) for values of 5, from 20° to 40°.
Little significant variation from this value is expected for other rea-
sonable values of 5,. The total moment, M, is

4
L cosa L'seca

L o (43)
1}

L coso.

Substituting the values of dZ, and dZ, obtained from equations (33)
and (34) into equations (41) and (42) 1nsert1ng the result into equa-
tion (43), and integreting gives

=—3—F (a)L'2 (44)

as the expression for M in terms of the instantaneous wetted length and
2-force, where

7,(a) = cos?a(0.4 sin’a + cos’a)

+ c8c2a(0.6 cosba — 0.3 cos'a ~ 1.2 cos?a + 0.9) . (45)
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The variation of F,(x) with a, the angle between the stagnation line and
keel of the planing body, is shown in Figure 19. It is seen that the val-
ue of Fy(a) =1 is valid for all practical purposes; therefore,

M =—§-L'2 . (46)

This two-thirds value has been experimentally verified by some previous
landing tests of Vee-bottom surfaces prior to chine immersion (Refer-
ence 11).

From equation (46), the moment derivatives M,, M., and M, are
easily obtained in terms of the corresponding Z-force derivatives and
subsequently in terms of the equilibrium planing geometry and Z-force.
These derivatives are discussed below:

The pitching mument change with change in depth, ¥,, is expressed

as

Y3 s 1
W, = L',z, , - {4

z Lyz, +

w |
O’hg

which becomes, using equation (22) for L',,

22

3 sinT,

o

Equation (Z4) i: used to express 2, in terms of the equilibrium Z-force,
2,. Thus,

2z

51n70

[

H =
Z

(49)

The pitching moment change with change in trim angle, M_, is given

by

As previously shown (page 21), L' = 0. Finally, using equation {28) to
obtain Z_ in terms of Z, results in

.‘.4,,.=—‘i.6— !‘kzo (51)
sin 27,

The pitching moment change with change in vertical velocity, ¥, is
given by

2 2 .
My, =-§—['ka +—3—ZOL',, 3 (52)
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At equilibriuvm, L', = 0. 2, is obtained in terms of Z, by using equa-
tion (32). Hence,

4L,

¥ 3V, tanT, 9

(53)

The pltch1ng moment change with chnnge in angular veloclty, Mq,
must be treated i1n a manner analogoua to Z, 1nasmuch as c¢guation {46) 1=
no longer valid for rotational motion. Knowing this, the expressions for
dM, and dM, must be first d1fferentxnted with respect to g and then inte-
grated over the wetted area to obtain M

The following derivatives may be obtained from eguations (41) and
(42):

-~
(39
R

[}

-

()_A_.ﬁ tana sina + Icosa-)(dzl)q (54)
= (0,60 cosa + 0.4 Lk)(dZ,)q ’ (55)

vinaily, after the express‘ona for (dZ‘) and (dZ,) evaluated at equi-
librium are inserted intc equations {54) and (55) and the resultant ex-
pressions are integrated over the wetted area, the result is

cosf
Mg = 3v Foan, /--> F,(a) ( > , (56)

\ cosp

where
F,(a) = csc?a[l.8 cosba + cos®a(3 sin%a - 0.8)

+ cos%a(l.25 sin‘a - 2.4) + 1.4) . (57)

A plot of F,(a) vs. a 1s shown on Figure 19.

REMARKS

A summary of all the stability derivatives derived above is pre-
sented in Table II. The follow ing are believed to be the significant
facters distinguishing this analysis from any other:

(1) With the exception of Z_ and M., the above derivatives have
been expressed in terms of the theoretical equllxbrxum i1fu force, which
can be cbtained once the deadrise and trim angies of the body ars known,

(2) The theory has allowed for the evaluation of all the derivatives
with full cognizance being taken of the variatiorn of C, with the quanti-
ties z, v, 7, and gq.

CONCLUDING HEMARKRS

A theory of the pressure distribuition and load on a three-dimen-
sional prismatic planing body has been developed in this report, subject
to the usual assumptions regarding the flow about the body, which are:

Py {rompmr Srrmmy poerny pompy
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(1) The fluid 1s incompressible and inviscad.

(2) The gravity forces may be considered negiigible in comparieon
with the dynamic forces of the fluid.

The proposed theory treats the flow about the plauing body in planes per-
pendicular to ite gtagnation line to be equivalent to the two-dimensional
flow about an immersing wedge. In this way, the present study derives
pressure distributions in sections of the body perpendicular to the stag-
nation line, and total loads acting on the body over a wide range of plan-
ing cond1c1ons. Additional special assumptions were required to treat the

three.dimensional n]nninv crage in terms of =2 cnrresponding two-dimension-

al theory. These are:

(3) There exists, on the planing-body bottom, a stagnation line
which 1s defined as the locus of points of maximum pressure,

(4) The flow along the stagnation line has a uniform velocity which
is the componenc of the freestream velocity in the spatial di-

fpa A

rection of the auauuuu;G line.

All the assumptions appear reasonable on the basis of the g\od agreemenc
found between the theoretically predicted and measured maximum pressures
and pianing loads.

The results of this study are presented for the most part in grapi-
cal form since the theory of the two-dimensicnal penetrating wedge which
was used is available in this form only. The graphe include thecretically

determined variations of both the dimensionless maximum pressure, based
on planing stagnation pressure, and the lift coefficient, based on wetted

Foal th nlaning \I-lf\ﬂ‘l"\l and fluid f‘An-1f-u unf-h tha gann-"ric

keel length, planing velocity, eand density, with

planing parameters of trim end deadrise angles. The maximum pressure co-
efficient compares well withexperimental data obtained from landing tests
of planirg bodies with deadrise angles of 22)4° and 30° over trim angles
ranging from 0.2° to 30°. The variation of the theoretically predicted
lift coefficients with body parameters shows good agreement with the mea-
sured variation over the ranges 10° < £ < 40° and 2° < 7 < 12°, The mag-
nitudes c¢f the theoretical lift coefficiesnts are slightly greater than
the measured ones. This may well be expected since the theory does not
accurately reproduce the loss of pressure, or lccal load, which is be-
lieved to occur at the step of the planing body.

The results of the theory are in a generally applicable form as
demonstrated by the development of stability derivatives whicii can be
used in a linear porpoising analysis. The physical picture of the planing
body afforded by this theory will be useful in future design and analysis
work of planing bodies.
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APPENDIX B

DERIVATION OF THE ASSOCIATED DEADRISE ANGLE
iN TERMS OF THE PLANING BODY GEOMETRY

The associated deadrise angle has been defined in tha texti as the
deadrise angle of the two-dimensional immersing wedge associated with the
passage of a planing body through a plane which is stationary in space
and oriented normal to the stagnation line of the body. In the present
derivation, this is the angle made between the line of intersection of
the stationary plane and the body surface, and this plane and the water
surface,

The task of deriving an expression for the associated deadrise
angle in terms of the trim and deadrise angles of the planing body there-
fore becomes simply a problem in geometry. The uxis system is fixed at
the leading edge of the wetted area, with the x-axis positive in the di-
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rection of motion, the z-axis positive vertically downward, and the y-axis
positive to starboard. With the dirsction cosines of the upward direction
of the stagnation line on the starboard side of the planing body and the
keel line denoted by (A,,u,, v,) and (A\,, u,, v,), respectively, the
equation of the planing surface Lottom on the starboard side may be writ-

ten as
S U [$! All ST
I x + y + zZ = 0 . (B"l)
| 2 Yz | Yz xil As Bz

The equation of the plane normal to the stagnation line on the starboard
side and passing thrcugh the origin is

and the equation of the water surface is, of course,
z =0 g (B-3)

A set of direction numbers for the upward direction of the line cf
intersection between the plane normal to the stagnation line and the
plane of the bottom is obtained from equations (B-1) and {B-2) to be

—-uy 0 vy i A Yy 0 0 My A

LU ST N P L T Y I R S T - (B-4)
|

Vq Ay Hy Yy Ny My v, A Ha

The starbecard-side direction of the line of intersection between the nor-
mal plane and ihe plane of the water surface hae the direction numhers

(#1 . "'>\| ' 0)

(B-5)

With the directicn cosines associated with the direction numbers in (B-4)
and (B-5) denoted by (a,, £,, 7,) and (a,, ﬁg. 7,), respectively, then

cosB, =aja, * L6, + VY, (B-6)
where ﬁa is the angle between the lines of intersection of the normal
plane with the body and with the water surface and is therefore the de-
sired associated deadrise angle. Using the expressions given by equations
(13a), (13b), and (13c) of Reference 2, corrected to the starboard side
for (\,, #,, v,), and using (cos7, 0, —sin7) for (A, #,, v,) results in

- (K — sin?p) /sinf
[{1/sin?7) + (K?/sin?f cos?r)]*

@)
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8, = cosfi/sinT

[(1/sin?7) + (K?/sin3/ cosit)]%

—(K tanT/sinf + sinf/tanT)

Y, =
[(1/sin®T) + (K?/sin3A cos?r))%
K tan7T/tanf
a =
2 r = :
[{k tan7/tanf}? + {K tanT 2inT)? + cos?~ + 2K siniT)¥
s —(cosT™ + K tanT sinT)
2 = .
[(K tanT/tanf)? + (K tanT sin7T)? + cos?T + 2K sin?r]¥
Y, =0

whare 7 and 55 are rgnnnnr1vply the trim and deadrise anzles of the nlan-
ing body, and the quantity K is a function of deadrise angle, defined in
Reference 2 as the ratio of two distances -- ore from the centerline of
an immersing wedge to the maximum pressure point, and the other from this
centerline to the still water intersection point, respectively. This def-
inition shows K to be a function of the planing body deadrise 5 since the
immersing wedge in Reference 2 has the same deadrise 2s the nlaning body.
Shown 1n Fxgure B-1 (page 39) is s curve of K va. wedge deadrise sngle
obtained from the results of References 1. The curve may be used to cbtain
K for the purposes ofcalculatxng a,, Byi.v.,74 sbove 11 the wedge dead-
rise angle in Figure B-1 is taken as £.

APPENDIX C
DERIVATION OF EQUATION (1)

The reader is refrrred to Figure 1 for the following development of
the penetration velocity of the associated immersing wedge since, in this
Figure, true view dimensions of the planing body are clearly represented.
The derivation is a result of the mathematical statement of the physical
condition discussed in the text, namely, to an observer fixed in a ata-
tionary plane taken normal to the stagnation line of the planing body,
the motion of this stagnation line in the plane must be equivalent to the
motion of the traveling maximum pressure point of the immersing two-
dimensional wedge which represents the planing surface.

In Figure 1, the distance that the body must travel in the x-direc-
tion in order that the stagnation line pass completsly through the sta-
tionary plans is NK, cosT. At the time wher the point §; un the atepn en.
ters the atatxonary plane, this plane intersects the extended keel line

}ormep o i [= il s



at K,. It can be verified that the length $,K, measured in the plane of
the planing surfsce bottom is

C
2 . (C-1)

cosf cosa

$,k,

where C, is the labeled distance from the centerline plane to the inter-
section of the stagnation line and step, and where a 1s the angie between
the keel and stagnation line of the planing surface. Also,

S,X
OK, = —— . (C-2)

sina

The time. t, taken by the body to traverse the distance OK, cosT at
the planing velocity V, is

OK, cosT
Ak T (C-3)

14

To an observer fixed in the stationary plane, it then appears that the
traveling maximum pressure point of the associated deadrise wedge is mov-
ing outboard along the wedge with velocity v’, where

’ = S,'Kl s 2N
v = . . \L-%)
which, by (C-1), (C-2), and (C-3), 1s
S1na
!" = VR 1 . (C'S)
cosT
The remaining problem is to relate the penetration velocity, v,, to

this velocity outboard along the wedge. To this end, consideration will
be given to the flow field of the immersing wedge of deadrise £, in the
stationary plane {(Figure 2). In this Figure are labeled the analogous
distances which appear in Figure 1, namely, LA C,', and C,', which are
the distances from the centerline plane to the still water 1intersection,
to the maximum pressure point, and to the spray root, respectively.
Clearly, from this Figure,

=
CS

cosf,

! =

' (C-6)

where the dot indicates time differentiation.

The flow about an immersing wedge changes with time. However, this
time variation of the flow is in reality a spatial expansion or growth of
a single flow pattern. Hence., 1f certain relations between distances in
the flow pattern hold true for one time, theyare invariant for all times.
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This condition, which may be termed a "similarity of flow condition,"
gives

T ‘ =
Cp=et (C-7)
or, equivalently,

f e Yo : :
CP t‘nﬂa ! (C 8)

it also gives

¢, = K" : (C-9)
Here, e and K are constants for any given deadrise angle. It will be
shown, however that + disappears in the succceding development so ihat
the final squation depends on K only.

The curve of Figure B-1 shows K vs. wedge deadrise angle. This
curve may be used to obtain K vs. £, if the wedge deadrise angle in this
Figure is taken as 5,. It is noted that Figure B-1 was also used to ob-
tain K vs. B, the planing body deadrise angle (see appENDIX B, page 32),
These two uses are possible only if it is assumed that the physical flow
pictures in pianes normal to the keei and normal to the stagnation liine
both are well represented as an immersing wedge.

Combining eqguations (C-7) and (C-9) and differentiating with re-
ananrt Tn rima oivas
anest o time gives
) K .
C,/=—¢C, (C-10)
e e P

v -__E._ 5 (C'll)

Finally, if the right-hand side of equation (C-8) ia used for €.' and the
right-hand sides of aguations (C-5) and (C-11) are equated, the relation

sinfy sina
-——.——.!/
K coaT L

S
ne”

is obtained. It should be remembered from equation (C-9) that, here, K ia

considerad as s function of B . For computaticnal purposes, uss is mads

of the following relation for tana, which was obtained from eguaticn (15)
of Reference 2:
K tanT

tana = m . (C-13)

Curvea of v,/V, vs. 7 with 5, aa parameter zppear on Figure 8.
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APPENDIX D

DEVELOPMENT OF THE TRANSFORMATION EQUATIONS
WHICH RELATE THE "STANDARD PCRPOISING STABILITY DERIVATIVES"
TO THOSE DERIVED IN THIS REPORT

in this study, "standard porpoising stability derivatives” are de-
fined as those hydrodynamic force and moment derivatives of use in a
linear porpoising stability analy81s and derived from motions of, and
about, the center of gravity of the planing body. These differ from the
stablllty derivatives previously considered in the body of this report in
that the latter are derived from motions of, and sbout, the leading edge
of the wetted area of the planing body.

The two axis systems which delineate the above reference systems are
shown in Figure 17. They are the space-fixed (x*,z*) axes and the body-
fixed (x,z) axes. The latter are fixed in the planing body at the equi-
librium point of intersection of the keel with the undisturbed water sur-
face and are fixed inorientation. The planing body is shown in Figure 17a
in i1ts equilibrium planing condition, and in Figure 17b in an arbitrary
perturbed state, where the body has been displaced and rotated about the
C.G. In Figure 17b, the coordinate system fixed at the initial leading
edge of the wetted ares 1s dispiaced distances x and : from its initial
state (denoted by 0), nd the center of gravity is displaced trom 1its

inirisl state by distarn .«s ICG and z*_. The reiations between these dia-
nlacaments, with tha affact o ok

by ] 1] . = 8 a
niteh anole shour Ffhe fcaniaw

~a aCiis wiipat SLTUL T LvaavSa

"

of gravity taken into account, are

xee * b (sin6 — sing,) + a{cos@ - cosﬁo) (D-1)

N
"

% £ noN 3 - N .
2ig t+ b {cosf — cos&,} — ai{sind — 81n90)

) (D'z)

where the distances a and b are respectively the pc¢rpendicular distance
from the C.G. to the perpendicular to the keel at the point 6, and the
perpendicular distance from the C.G. to the keel (note Figure 17). The
first terms on the right-hand side of (D-1) and (D-2) are the changes in
x and z due to pure displacement of the C.G.; the remaining terms are the
changes in z and 2 due to pure rotation about the C.G.

Equations (D-1) and (D-2) may be differentiated to give the rela-
tions betwcen velocities in the two systems. Furthermcre, since the angles
and angular rates of the two systems are identical, the resulting equa-
tions relating forces, moments, displacements, and velocities between the

two systems &re:

zN

sinT

M - aN - = M ' (D-3)

R-492
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2 Wz (D-4)
x = x2. + b(ainf - sinb,) + a(coab - cosb,) (D-5)
z = 28, + blcosf - cosf,;) - a(sinf — s8inf,) (D-6)
u = ul. + bg*cosf — ag*sinG (D-7)
w = w2, — bg*sind - ag°cosf {D-8)

T =86 (D-9)

T =9 (D-10)

where

M is the moment about the instantsneous position of the lead-

ing edge of the wetted area;

M* is the moment about the C.G.;

N is the resultant force normal to the keel;

g*, q are the pitching angular velocities of the body about the
C.G. and the origin of the (x,z) coordinate system, re-

spectively;
.. wa i an ca= = PP (o LN/ BT T 3 . o
a, ¢ are velocities of the canter of the \f£,z) coorainate system
ralative to the point 0;

uge:¥eg are velocities of the C.G. along the x* and z°* coordinace
axes, respectively;

Z* = 2 1is the vertical force;
T = & is the trim angle of the body.
In a linear analysis, it is permissible to replace the normal force N by

the vertical force 2. This substitution is made in the following develop
ment,

Consider the following functional relations:

2* =2(x, 3z, u, 5, 7, qJ
M* = M*(x, z, u, », 7, q) .
After applying the "chain rule” of partial diffareutiation, equations

(D-2) through (D-10) sre used to arrive at the following resultant ex-
pressions:

2"50 2
Z‘"Ec " 2

.

[R—

o v—

P .

S
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These are the t.ransformat.xon equations which give the stabldty derxva-

...... Y
\'""9 “l was i - .&

¢ {x*,z*) coordinate aystem in terms of those derived in the

=2, -2,(b 8inf, + a cosb,)

=2y ~ Z,(~b cosb, + a 8inb,) — Z,(b 8inf, + a cosb,)

Z
B B By
o

- aZy)

[
Py
o

/ 2
sin7,

= ﬁ!q— an - (M, —aZ,)(-b cosf, +a sin@o) - (M, —aZ,)(b 8inb, +a cosb,) .

text, namely, those in the (x,z) ccordinate system.




R—4G2
-38-

TABLE 1
TABULATION OF TEST DATA AND RESULTS
TEST PARAMETERS TEST RESULTS
Trim Angle, 7,| Load, A, | Wetted Length, L,. | Wetted Width, 2C,, .
4.8. b. beams E_J beans Lift Coefficient, C\
£ =100 Vp = 20.7 ft./sec.
2 2.40 0.93 0.64 0.00837
2.40 0.98 0 54 0.00769
3.4 1.19 0.16 0.00726
3.40 1.12 0.14 0.08817
¢ 4.91 0.50 0.62 0.0592
4.81 0. 48 0.64 0.0642
5.91 0.58 0.12 0.0531
5.91 ﬁ 0.58 0.16 0.0531
6 4.92 0.36 0.64 0.1145
4.0 n.38 0.60 0.1007
6.9 0.36 0.62 8.11¢
6.92 0.49 0.74 0.0871
6.92 .48 0.14 ; 0.0904
6.92 P $.42 0.70 0.1187
6.92 0.46 0.76 0.0988
s 4.93 0.22 5.5¢ 0,3102
4.93 0.22 0.52 0.3102
6.93 8.36 0.66 0.2254
6.93 0.35 0.70 0.1732
6.93 0.35 0.70 0.1732
6.93 0.34 0 66 0.1811
9.93 0.36 0.8 0.2311
10 5.94 0.29 0.74 0.2148
5.94 0.23 0.58 0.3364
5.94 0.24 0.60 0.3153
6.94 0.%0 0.64 0.2308
6.94 0.30 0.64 0.2305
12 4.95 0.18 G.50 2.¢870
.98 0.20 ¢.48 0 5133
6.95 Gizc 0. a2 0.5133
£= 200 Vp = .6 ft./sec.
2 1.96 2.13 0.53 0.060128
1.90 2.12 0.58 0.00129
‘4 1.50 0.80 $.44 0.00907
2.90 0.92 0 54 0.0104
2.90 0.92 0.42 0.0104
6 3.90 0.59 0 46 0 0335
4.90 0.58 .54 5.6325
) 4.90 0.44 0.66 0.0766
4.90 0. 46 0.43 0.0702
4.90 G 43 0.45 0.084¢
3.80 0.40 0.42 0.0748
12 2.3 0 21 0.30 0.200
2.90 0.19 0.30 0.250
3.90 0.23 8.36 0.225
£ = 30° Vp = 24.6 ft./sec.
2 1.8% 3.20 0.52 I 0.0005532
1.8% 5.23 3.52 o anngan
3.85 4.42 0.56 0.000657
3.85 4.54 5.7z 2.000€12
1.85 3.24 0.56 0.0C0566
3.85 4.4l 0.12 0.0006%7
4 3.85 1.76 0.58 0.00381
3.85 1.76 0.56 2.66385
3.85 i.76 0.8 n.00381
1.85% 1.27 ¢ 40 5.50352
1.85 1.21 0.40 0.00352
6 3.85 1.00 £.46 0.0118
3.85 1.02 0.46 0.0113
3.85 1.02 0.46 0.0113
5.85 1.26 0.56 ..0113
£.85 1.24 0.58 0.0118
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TABLE I (cont'd.)

TEST PARAMETERS | “TEST RESULTS o
Trim Angle, 7, | Load, A. || Wetted Length, L,, | Weited Width, 2€C,,
deg. 1b. beams ke beams [[ift c°’ff'°'°“t C
G =30° {contid.) Ve = 24.6 Tt./sec.
s 5.85 0.80 0.52 0.0281
5.85 078 0.50 0. 0295
3.85 0.63 0.40 2.0298
3.85 0.62 0.40 0 0306
10 5.85 0.61 .46 0.0482
5.85 0. 62 .43 0. 0452
7.85 0.73 0.56 ¢.04%)
7.85 0.78 0.56 0.0396
12 7.85 0.52 0.52 0.0889
7.85 0.53 0.52 0.085¢
5.85 | 0.45 0.44 0.0898
5 85 0.45 0.46 0.0893
P e - -
TABLE 11
SUMMARY 'ABLE OF THE CA LATED STABILITY DERIVATIVES
DERIVATIVE B YALUE IN TERMS OF EQUILIBRIUN Z-FGRCE
e —
. 4 Force Derivatives g
r—____...- SU - p——e L e ———— -I
| B2
4y LpsinT, “o i
. i
5.4 | '
Z, sin 27, Lo
- 2
' TS =
= Vytant, ©
_ 2Ly ‘costy, \ /Vn\( :
zZ —21{l+cos?a)2,
) 3VacosT, cosf) \v,)
i M-Moment Derivatives !
M 2 2.
B sint, ¢
3.6L
" KT
sin 27,
My _'-"_L Z,
3V, tenT,
q |
. Lk oy (a) cosﬁa\ > !
9 3V cosT, "o cosf/ ° :
. - o RN |
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ASSOCIATED WEUGE DEADRISE ANGLE, Ba, DEG

FIGURE 3

VARIATION OF ASSOCIATED WEDGE DEADRISE ANGLE
WITH PLANING BODY DEADRISE AND TRIM ANGLES
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FIGURE B

TYPICAL UNDERWATER PHOTOGRAPHS
OF THE PLANING BODY

PLANING CONDITIONS
B=10°, T=12°, A= 7LB. V,*24.66 FT./SEC.

PLANING CONDITIONS
B=20", T=2° As2LB. Va* 24.50 FT./SEC.

A* MEASURED VALUE OF Cp

B= PREDICTED VALUE GF C; FROM EQ. (8) AND Ly
C= STAGNATION LINE

D= KEEL
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FIGURE 6

COMPAR!SON OF EXPERIMENTAL AND THEORETICAL VALUES
OF THE LIFT COEFFICIENT
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VARIATION OF THEORETICAL MAXIMUM PRESSURE COEFFICIENT
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PRESSURE
DISTRIBUTICN
ACROSS SECTION G-C

FIGURE 11

A PLAN VIEW OF THE PLANING BODY
WITH SECTIONAL PRESSURE CONTOURS
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FIGURE 13

VARIATION OF THEORETICAL AVERAGE PRESSURE COEFFICENTS
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FIGURE IO

VARIATION OF Z SIN T/TaNB
WITH PLANING BCDY CEADRISE AND TRIM ANGLES
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FIGURE 13

TRUE VIEW OF ONE SIiDE OF THE SYMMETRICAL WETTED AREA

OF THE PLANING BODY
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FIGURE 19
VARIATION OF F,(a) AND F, (a)
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